
 Pointers

Biswajit Prasad
Assistant Professor

Department of Computer Science
Maharaja Manindra Chandra College

Calcutta 700 003

Pointer Concept

 Each variable is assigned a particular memory
location referenced by its address.

• For example, when the variable i is declared as

• int i = 20;

• i becomes a named location having an address (say
1000) in memory holding an integer value of 20

Pointer Definition

 In C, it is possible to manipulate a variable either by its name,
or by its address. The address of a variable can be stored in
another variable (called a pointer variable), and the variable
can be accessed through this pointer variable.

• A pointer can therefore be defined as a variable that holds
the address of another variable.

• A Pointer variable is associated with the type of the value it is
pointing to.

• Thus Pointer is a derived type.

Pointer – Declaration & initialization

 Pointers can be declared and initialized as follows:

• int i, *ip;

• i = 20;

• ip = NULL;

• ip = &i;

• & is the referencing operator returning the address of a variable

Pointer dereferencing

 * is the dereferencing operator which returns the value
pointed to by a pointer

• Thus one can write

• j = *ip;

• j = *ip + 1;

• *ip = 10;

• ip1 = ip2;

Arrays and Pointers

 In the declaration

• int arr[10];

• the name arr of the array refers to the starting address of the
area that gets allocated for storing the elements of the array,
i.e. address of arr[0], i.e., &arr[0]

• Thus arr is a constant pointer, pointing to arr[0]

• (arr + 1) points to arr[1], i.e., (arr + 1) is same as &arr[1], and so
 on

• In other words, *(arr + 1) means arr[1], and so on

Pointer Arithmetic

 If ip is a pointer variable, ++ip, ip++, --ip, ip–- and ip + n,
and ip – n (n an integer) are valid expressions

• ip++ means

• new value of ip = old value of ip + size of data type
associated with ip

• ip * n and ip / n are not valid

• If ip1 and ip2 point to two different elements of an array,
 ip1>ip2, ip1<ip2, etc. are meaningful

Pointers and 2-dimensional arrays

 What is meant by

• int p[3][5] = {
{ 2, 4, 6, 8, 10},
{ 3, 6, 9, 12, 15},
{ 5, 10, 15, 20, 25}

};

• What are the values of *(*p), *(*p+1), *(*(p+1)),
((p+1)+1), *(*(p+1)+1)+1 ?

Pointer to Pointer

 The address of a variable can be stored in another
pointer variable, as discussed earlier

• Similarly, the address of a pointer variable can be
stored in another variable; referencing and
dereferencing can be done upto any level of nesting

• int i, *ip, **ip2p;
• i = 20;
• ip = &i;
• ip2p = &ip;

Strings and pointers

 What is meant by

• char *s = “abcdefgh”;

• char st[20] = “Akash Chopra” ;

• A string is a sequence of characters terminated by a
 NULL character ‘\0’

Pointers as arguments of functions

What is the difference between
void swap (int x, int y)

{ int temp = x; x= y; y=temp;
}
 And

void swap (int *x, int *y)
{ int temp=*x;

*x=*y;
*y=temp;

}

	Pointers, a recapitulation
	Pointer Concept
	Pointer Definition
	Pointer – Declaration & initialization
	Pointer dereferencing
	Arrays and Pointers
	Pointer Arithmetic
	Pointers and 2-dimensional arrays
	Pointer to Pointer
	Strings and pointers
	Pointers as arguments of functions

